Phosphorous Doping from Apcvd Deposited Psg

نویسندگان

  • Felix Book
  • Holger Knauss
  • Carsten Demberger
  • Florian Mutter
  • Giso Hahn
چکیده

The phosphorous diffusion from atmospheric pressure chemical vapor deposition (APCVD) deposited phosphorus silicate glass (PSG) promises reduced process costs compared to the standard POCl3 diffusion process, since no POCl3 gas flow is necessary during the diffusion process. Therefore, much smaller or no spacing between the wafers is necessary and the throughput of the diffusion process can be significantly increased. Furthermore, it allows a structuring of the doping source prior to diffusion. We investigate the effect of basic process parameters concerning the deposition of the PSG and the capping layer on sheet resistance and uniformity. On standard aluminum back surface field (Al-BSF) solar cells, cell efficiencies of up to 19.6 % were achieved. In a high temperature co-diffusion process with reduced P content, the APCVD-PSG emitter passivated with fired PECVD-SiNX features low j0E of 100 fA/cm2 at 50 Ω/sq. This results in a high cell VOC of 639 mV while leading to a jSC loss due to increased Auger recombination in the deep emitter profile. This loss can partly be compensated by a selective emitter etch-back. It would not occur, when the doping profile is located at the rear side of a bifacial or back contact solar cell as a BSF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

μc-Si SOLAR CELLS BY DIRECT DEPOSITION WITH APCVD

The rapid thermal direct deposition of micro-crystalline silicon (μc-Si) layers by atmospheric pressure chemical vapour deposition (APCVD) can be done on different intermediate layers and on various substrates. The deposition is done at temperatures between 850 °C and 1150 °C. A deposition rate of 1.6 μm/min has been achieved using standard process conditions. The microcrystalline structure cha...

متن کامل

Improved Stability of 4H Sic-MOS Devices after Phosphorous Passivation with Etching Process

Phosphorous passivation of the interface (4H-SiC/SiO2) improves interface trap density (Dit) from 10 13 eV -1 cm -2 to 2×10 12 eV -1 cm -2 at 0.2eV below the conduction band edge of 4H-SiC. Due to the formation of phosphosilicate glass (PSG) layer during P passivation, metal-oxide-semiconductor capacitors (MOS-Cs) are highly unstable. Under bias-temperature stress (BTS) there is very large shif...

متن کامل

Co-diffused Apcvd Boron Rear Emitter with Selectively Etched-back Fsf for Industrial N-type Si Solar Cells

The employment of a B-doped atmospheric pressure chemical vapor deposited (inline belt APCVD) borosilicate glass is an elegant technology for industrially realizing a p emitter. By drive-in of B and a subsequent POCl3 co-diffusion, p emitter and n front surface field (FSF) are established in a single process step. APCVD-SiOx is used to prevent the p emitter from being compensated during P diffu...

متن کامل

Doping and electrical properties of amorphous silicon carbon nitride films

Electrical properties and annealing behaviour of undoped and doped amorphous silicon carbon nitride (a-SiC N ) thin films, x y deposited by ion beam sputtering techniques, have been studied. Doping of the a-SiC N thin films with magnesium (Mg), and x y phosphorous (P) was carried out by ion implantation techniques, and subsequent annealing effect on the electrical conductivity (s) and activatio...

متن کامل

Residual Stress Variation in Polysilicon Thin Films

This paper compares the use of four mechanical methods for characterization of residual stress variation in low pressure chemical vapor deposited (LPCVD) polysilicon thin films deposited, doped, and annealed under different conditions. Stress was determined using buckling structures, vibrating microstructures, static rotating structures and the wafer curvature method. After deposition of 1.0 μm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017